NRAP: Tools for Geologic Carbon Storage Risk Assessment

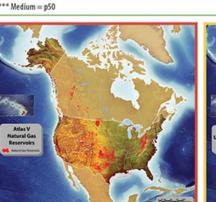
Eugene Morgan, Assistant Professor of Petroleum and Natural Gas Engineering eugene.morgan@psu.edu

May 29th, 2019

Pacific Northwest

U.S. Geologic Storage Capacity

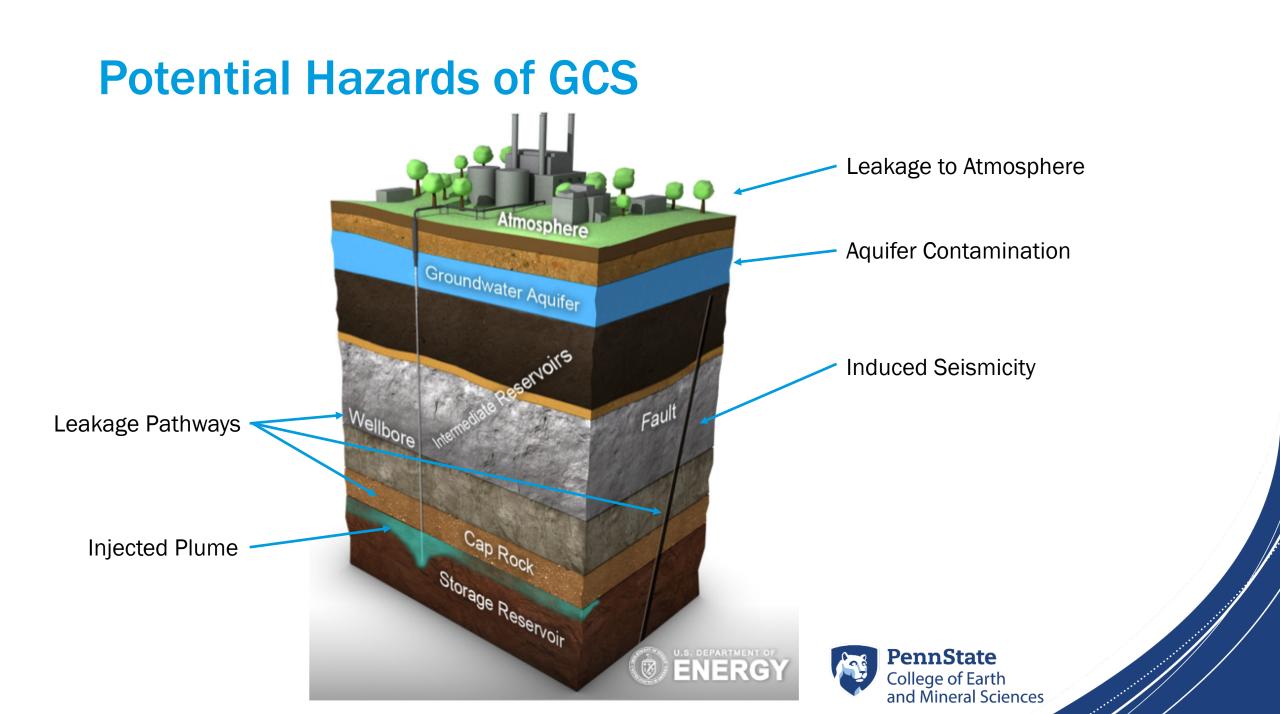
RCSP or eographic Region	CO2 Stationary Sources		CO ₂ Storage Resource Estimates (billion metric tons of CO ₂)								
	CO2 Emissions (million metric tons per year)	Number of Sources	Saline Formations			Oil and Gas Reservoirs			Unmineable Coal Areas		
			Low	Med***	High	Low	Med	High	Low	Med***	High
SCSP	115	301	211	805	2,152	<1	<1	1	<1	<1	<1
GSC	267	380	41	163	421	<1	<1	<1	2	3	3
RCSP	604	1,308	108	122	143	9	14	26	<1	<1	<1
COR*	522	946	305	583	1,012	2	4	9	7	7	7
ECARB	1,022	1,857	1,376	5,257	14,089	27	34	41	33	51	75
WP	326	779	256	1,000	2,693	144	147	148	<1	1	2
ESTCARB*	162	555	82	398	1,124	4	5	7	11	17	25
on-RCSP**	53	232									
otal	3,071	6,358	2,379	8,328	21,633	186	205	232	54	80	113


Estimates of CO₂ Stationary Source Emissions and Estimates of CO₂ Storage Resources for Geologic Storage Sites

Source: U.S. Carbon Storage Atlas - Fifth Edition (Atlas V); data current as of November 2014

* Totals include Canadian sources identified by the RCSP

** As of November 2014, "U.S. Non-RCSP" includes Connecticut, Delaware, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, and Puerto Rico



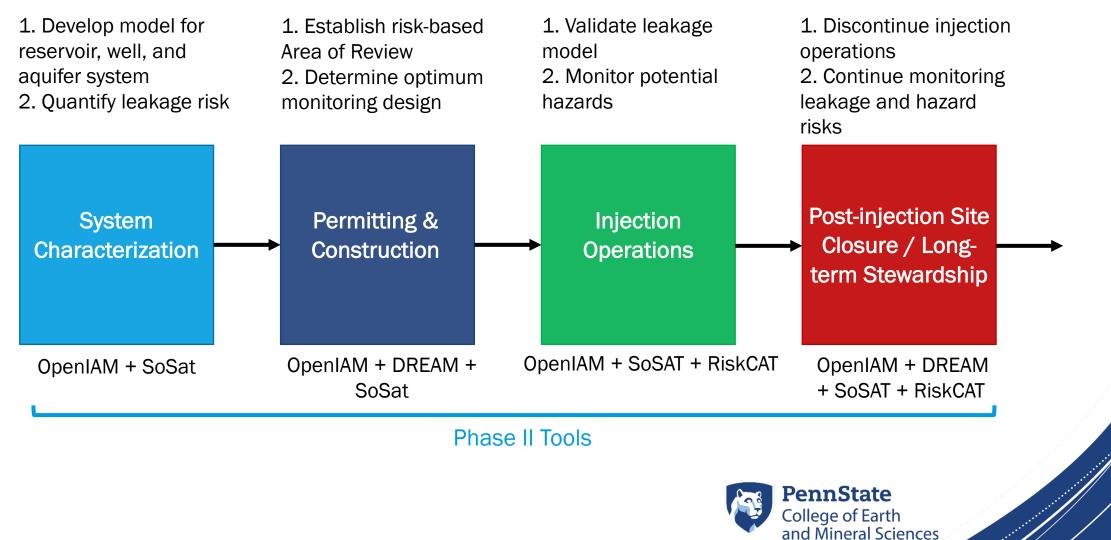
P90: 2.6 trillion metric tons CO_2 P10: 22 trillion metric tons CO₂

Source: "DOE's Carbon Storage Atlas – Fifth Edition (Atlas V)"

PennState College of Earth and Mineral Sciences

Mission

- The planning of large-scale, long-term GCS projects requires quantitative, science-based methods for estimating long-term environmental risks related to potential leakage and induced seismicity
- NRAP brings together researchers from five DOE national laboratories: NETL, Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Pacific Northwest National Laboratory
- Tools developed:
 - Integrated Assessment Model
 - Aquifer Impact Model
 - Ground Motion Prediction for Induced Seismicity
 - Short-Term Seismic Forecasting
 - Probabilistic Seismic Risk
 Assessment Tool
 - Multiple Source Leakage Reduced-Order Model


- Reservoir Evaluation and Visualization
- Reservoir Reduced-Order Model Generator
- Seal Barrier Reduced-Order Model
- Well Leakage Analysis Tool
- Designs for Risk Evaluation and Management
- State of Stress Assessment Tool

PennState College of Earth and Mineral Sciences

Penn State's Involvement: Workflow Development

Use Case: Risk Assessment for a Reservoir, Wellbore, and Aquifer System

New Use Case: CO2-EOR field & 45Q tax credits

Passed in February, 2018, the revamped 45Q tax credits give operators \$35/ton plus the delivered cost of CO2 (up from \$10/ton).

A Proposed New Tool to Help EOR Operators:

- Critical Question: What design of CO2-EOR job is necessary to add financial value to project under 45Q tax credit scheme?
- Workflow: Optimal CO2-EOR design variables
- Case Study: Cranfield, Teapot Dome

Thank You! Questions? Comments?